奥数网 奥数大连站 > 小学试题库 > 四年级 > 数学 > 正文

四年级奥数基础第二十讲:加法原理

来源:大连奥数网整理 2012-02-13 10:56:35

  以下是四年级奥数基础第二十讲:加法原理。为帮助小学四年级的孩子学习奥数,大连奥数网整理了小学四年级奥数基础讲义。有例题有练习,大家一起来学习吧!

  四年级奥数基础第二十讲:加法原理

  例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?

  分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。

  例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?

  分析与解:根据挂信号旗的面数可以将信号分为两类。第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。所以一共可以表示出不同的信号

  3+6=9(种)。

  以上两例利用的数学思想就是加法原理。

  加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法 ……在第n类方法中有mn种不同方法,那么完成这件任务共有

  N=m1+m2+…+mn种不同的方法。

  乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。

  例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?

  分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。

  因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。

  例4用五种颜色给下图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?

   

  分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同。本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况。

  当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选。根据乘法原理,此时不同的染色方法有

  5×4×3×3=180(种)。

  当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B有3种颜色可选;C有2种颜色可选;D有2种颜色可选。根据乘法原理,此时不同的染色方法有

  5×4×3×2×2=240(种)。

  再根据加法原理,不同的染色方法共有

  180+240=420(种)。

我要投稿